4,631 research outputs found

    Effects of pulse width and coding on radar returns from clear air

    Get PDF
    In atmospheric radar studies it is desired to obtain maximum information about the atmosphere and to use efficiently the radar transmitter and processing hardware. Large pulse widths are used to increase the signal to noise ratio since clear air returns are generally weak and maximum height coverage is desired. Yet since good height resolution is equally important, pulse compression techniques such as phase coding are employed to optimize the average power of the transmitter. Considerations in implementing a coding scheme and subsequent effects of an impinging pulse on the atmosphere are investigated

    Mapping the gravitational wave background

    Get PDF
    The gravitational wave sky is expected to have isolated bright sources superimposed on a diffuse gravitational wave background. The background radiation has two components: a confusion limited background from unresolved astrophysical sources; and a cosmological component formed during the birth of the universe. A map of the gravitational wave background can be made by sweeping a gravitational wave detector across the sky. The detector output is a complicated convolution of the sky luminosity distribution, the detector response function and the scan pattern. Here we study the general de-convolution problem, and show how LIGO (Laser Interferometric Gravitational Observatory) and LISA (Laser Interferometer Space Antenna) can be used to detect anisotropies in the gravitational wave background.Comment: 16 pages, 6 figures. Submitted to CQ

    Use of the VAD technique and measurements of momentum flux in the stratosphere at Aercibo, part 4.3A

    Get PDF
    The Arecibo 430-MHz radar was used in the velocity-azimuth display (VAD) mode to obtain radial velocity measurements at 16 azimuth directions from which the three-dimensional wind field and momentum flux can be calculated. The radar was operated on a nearly continuous basis for a seven-day period in May of 1982 and the elapsed time between start and finish of a VAD scan was approximately 35 minutes. Radial velocities were measured in the upper troposphere and lower stratosphere (6-24 km) with at height resolution of 150 meters at a zenith angle of 15 deg. Vertical and horizontal velocities are calculated from the sums and differences, respectively, of radial velocity pairs, i.e., at azimuth directions AZ and AZ + 180 degrees. Momentum flux at a particular azimuth is calculated by taking the difference between the square of radial velocities at AZ and AZ + 180 degrees. It should be noted that measurements of radial velocity pairs are not simultaneous but are time delayed by approximately 15-25 minutes. This period, the time required to rotate the antenna feed and take measurements at AZ and AZ + 180 deg, effectively limits sampling of velocities and momentum fluxes to longer period gravity waves and planetary waves

    Facing the LISA Data Analysis Challenge

    Get PDF
    By being the first observatory to survey the source rich low frequency region of the gravitational wave spectrum, the Laser Interferometer Space Antenna (LISA) will revolutionize our understanding of the Cosmos. For the first time we will be able to detect the gravitational radiation from millions of galactic binaries, the coalescence of two massive black holes, and the inspirals of compact objects into massive black holes. The signals from multiple sources in each class, and possibly others as well, will be simultaneously present in the data. To achieve the enormous scientific return possible with LISA, sophisticated data analysis techniques must be developed which can mine the complex data in an effort to isolate and characterize individual signals. This proceedings paper very briefly summarizes the challenges associated with analyzing the LISA data, the current state of affairs, and the necessary next steps to move forward in addressing the imminent challenges.Comment: 4 pages, no figures, Proceedings paper for the TeV Particle Astrophysics II conference held Aug 28-31 at the Univ. of Wisconsi

    Forward Modeling of Space-borne Gravitational Wave Detectors

    Full text link
    Planning is underway for several space-borne gravitational wave observatories to be built in the next ten to twenty years. Realistic and efficient forward modeling will play a key role in the design and operation of these observatories. Space-borne interferometric gravitational wave detectors operate very differently from their ground based counterparts. Complex orbital motion, virtual interferometry, and finite size effects complicate the description of space-based systems, while nonlinear control systems complicate the description of ground based systems. Here we explore the forward modeling of space-based gravitational wave detectors and introduce an adiabatic approximation to the detector response that significantly extends the range of the standard low frequency approximation. The adiabatic approximation will aid in the development of data analysis techniques, and improve the modeling of astrophysical parameter extraction.Comment: 14 Pages, 14 Figures, RevTex

    Time-frequency analysis of extreme-mass-ratio inspiral signals in mock LISA data

    Get PDF
    Extreme-mass-ratio inspirals (EMRIs) of ~ 1-10 solar-mass compact objects into ~ million solar-mass massive black holes can serve as excellent probes of strong-field general relativity. The Laser Interferometer Space Antenna (LISA) is expected to detect gravitational wave signals from apprxomiately one hundred EMRIs per year, but the data analysis of EMRI signals poses a unique set of challenges due to their long duration and the extensive parameter space of possible signals. One possible approach is to carry out a search for EMRI tracks in the time-frequency domain. We have applied a time-frequency search to the data from the Mock LISA Data Challenge (MLDC) with promising results. Our analysis used the Hierarchical Algorithm for Clusters and Ridges to identify tracks in the time-frequency spectrogram corresponding to EMRI sources. We then estimated the EMRI source parameters from these tracks. In these proceedings, we discuss the results of this analysis of the MLDC round 1.3 data.Comment: Amaldi-7 conference proceedings; requires jpconf style file

    Catching Super Massive Black Hole Binaries Without a Net

    Full text link
    The gravitational wave signals from coalescing Supermassive Black Hole Binaries are prime targets for the Laser Interferometer Space Antenna (LISA). With optimal data processing techniques, the LISA observatory should be able to detect black hole mergers anywhere in the Universe. The challenge is to find ways to dig the signals out of a combination of instrument noise and the large foreground from stellar mass binaries in our own galaxy. The standard procedure of matched filtering against a grid of templates can be computationally prohibitive, especially when the black holes are spinning or the mass ratio is large. Here we develop an alternative approach based on Metropolis-Hastings sampling and simulated annealing that is orders of magnitude cheaper than a grid search. We demonstrate our approach on simulated LISA data streams that contain the signals from binary systems of Schwarzschild Black Holes, embedded in instrument noise and a foreground containing 26 million galactic binaries. The search algorithm is able to accurately recover the 9 parameters that describe the black hole binary without first having to remove any of the bright foreground sources, even when the black hole system has low signal-to-noise.Comment: 4 pages, 3 figures, Refined search algorithm, added low SNR exampl

    LISA data analysis I: Doppler demodulation

    Full text link
    The orbital motion of the Laser Interferometer Space Antenna (LISA) produces amplitude, phase and frequency modulation of a gravitational wave signal. The modulations have the effect of spreading a monochromatic gravitational wave signal across a range of frequencies. The modulations encode useful information about the source location and orientation, but they also have the deleterious affect of spreading a signal across a wide bandwidth, thereby reducing the strength of the signal relative to the instrument noise. We describe a simple method for removing the dominant, Doppler, component of the signal modulation. The demodulation reassembles the power from a monochromatic source into a narrow spike, and provides a quick way to determine the sky locations and frequencies of the brightest gravitational wave sources.Comment: 5 pages, 7 figures. References and new comments adde
    • …
    corecore